
 BINSON-SPEC-1
This is the complete specification of the Binson serialization format, version 1. Refer to it
as BINSON-SPEC-1. Written May 2014 by [Frans].

 1. Introduction
Binson is a simple, general-purpose data serialization format.

This specification describes the Binson object data structure and how it is serialized to
bytes. Like objects of common programming languages, a Binson object has fields. A
field is a named and typed value. There are seven value types: five primitive types
(boolean, integer, double, string, bytes) and two composite types (array, object).
An array is a finite sequence of unnamed, typed values.

 2. Format
The bytes of a serialized Binson object follow this [ABNF] syntax.

object = begin *field end
field = string value
value = boolean / integer / double / string / bytes / array / object
array = beginArray *value endArray
string = stringLen utf
bytes = bytesLen raw
boolean = true / false

begin = %x40
end = %x41
beginArray = %x42
endArray = %x43
true = %x44
false = %x45
double = %x46 float64
integer = %x10 int8 / %x11 int16 / %x12 int32 / %x13 int64
stringLen = %x14 int8 / %x15 int16 / %x16 int32
bytesLen = %x18 int8 / %x19 int16 / %x1a int32

float64 = 8OCTET ; double precision floation point number [IEEE-754]
int8 = 1OCTET ; 8-bit signed two's complement integer
int16 = 2OCTET ; 16-bit signed two's complement integer
int32 = 4OCTET ; 32-bit signed two's complement integer
int64 = 8OCTET ; 64-bit signed two's complement integer
utf = *OCTET ; stringLen number of [UTF-8] bytes
raw = *OCTET ; any sequence of bytesLen bytes

 3. Rules
A finite sequence of bytes is a serialized Binson object if and only if the following rules
are fullfilled.

1. The byte sequence must follow the format of the ABNF rule object.

2. Values must be stored using as few bytes as possible.
3. Fields must be stored in order. The order must be the lexicographical order of the

[UTF-8] bytes of the name of the fields.
4. Two fields of the same direct parent object cannot have the same name.
5. Little-endian byte-order must be used.

 4. Recommendations
Non-normative recommendations:

1. An object should have less than 100 fields.
2. The size of a serialized Binson object should be less than 40 million bytes.
3. Field names should match the regular expression: [a-zA-Z][a-zA-Z0-9_]{0,49}.
4. Field names should use camel-case and start with a lower-case letter. Acronyms

should be treated as words. Examples: g8, httpHeader, customerId.

5. It is recommended that a map (associate array) is stored as a single array. The
order of the array values should be: key of first key-value pair, value of first key-
value pair, key of second key-value pair, value of second key-value pair and so on.

The reasons for the recommendations are: 1. for readability and feasability of linear
search implementations, 2. for feasability of in-memory processing, 3. for readability and
inter-operability with other object representations, 4. for consistency, 5. for consistency.

 5. References
[UTF-8] The Unicode Standard, Version 6.3.0.
[IEEE-754] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,
IEEE Std 754-2008
[ABNF] RFC 5234, tools.ietf.org/html/rfc5234
[Frans] Frans Lundberg, Stockholm, Sweden, franslundberg.com, +46707601861

Copyright Frans Lundberg. The specification above can be shared using the CC BY-ND
4.0 licence.

http://www.unicode.org/versions/Unicode6.3.0/
http://tools.ietf.org/html/rfc5234
http://franslundberg.com/
tel:+46707601861
https://creativecommons.org/licenses/by-nd/4.0/

